Notes.

(a) You may freely use any result proved in class unless you have been asked to prove the same. Use your judgement. All other steps must be justified.
(b) We use $\mathbb{N}=$ natural numbers, $\mathbb{Z}=$ integers, $\mathbb{Q}=$ rational numbers, $\mathbb{R}=$ real numbers, $\mathbb{C}=$ complex numbers.
(c) There are a total of $\mathbf{1 0 5}$ points in this paper. You will be awarded a maximum of 100 points.

1. $[5 \times 8=40$ Points $]$ Do any 5 among the following 7 choices (a)-(f). In each case, give example(s) as per the required condition.
(a) A UFD which is not a PID.
(b) An irreducible element in a domain R which is not a prime element.
(c) An odd prime number $p \in \mathbb{Z}$ that remains irreducible in $\mathbb{Z}[\omega]$ where $\omega=e^{2 \pi i / 3}$.
(d) An idempotent element $e \neq 0,1$ in the ring $\mathbb{R}[x, y] /\left(x^{2}+1, y^{2}+1\right)$.
(e) Infinitely many ideals I_{λ} in the ring $\mathbb{Q}[x, y]$ such that $(x, y)^{2} \varsubsetneqq I_{\lambda} \varsubsetneqq(x, y)$.
(f) A domain R and a torsion R-module M such the annihilator of M is (0).
(g) A ring R and two nonzero modules M, N such that $\operatorname{Hom}_{R}(M, N) \cong(0)$.
2. [15 Points] Let C denote the ring of continuous real-valued functions on the real line \mathbb{R}.
(i) Give an example of a maximal ideal in C.
(ii) Give an example of a non-finitely generated ideal in C.
(iii) Give an example of a finitely generated C-module M together with finitely many generators, for which the module of relations is not finitely generated.
3. [15 Points] Express as a direct sum of cyclic groups, the cokernel M of the map $\mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$ given by the following matrix.

$$
\left(\begin{array}{llll}
3 & 3 & 3 & 3 \\
1 & 3 & 1 & 1 \\
1 & 1 & 4 & 1 \\
2 & 2 & 2 & 2
\end{array}\right)
$$

4. [15 Points] Let $0 \longrightarrow N \xrightarrow{i} M \xrightarrow{f} P \longrightarrow 0$ be an exact sequence of R modules over a ring R. Prove that if P is free, then there exists a map $\pi: M \rightarrow N$ such that πi is the identity map on N.
5. [20 Points] Let R be a ring and let M, N be two R-modules.
(i) Define the tensor product of M and N over R in terms of its universal property.
(ii) Give a construction to prove that the tensor product exists. (You must also check that it satisfies the universal property).
(iii) Prove that for any R-module M, there is an isomorphism $R \otimes_{R} M \cong M$.
